8 Redox Reaction

Book:

1 Mark Questions

- Q. 1. Choose the correct alternative:
 - (i) Oxygen has oxidation state of +2 in:
 - (a) H,O,
- (b) H₂O
- (c) OF,
- (d) SO,
- Ans. (c) OF,
- (ii) White P reacts with caustic soda. The products are PH₃ and NaH₂PO₂. This reaction is an example of:
 - (a) oxidation
- (b) reduction
- (c) disproportionation
- (d) neutralisation
- Ans. (c) disproportionation
- (iii) What products are expected from the disproportionation reaction of hypochlorous acid?
 - (a) HClO₃ and ClO₂
- (b) HClO, and HClO,
- (c) HCl and Cl₂O
- (d) HCl and HClO,
- Ans. (d) HCl and HClO,
- (iv) Which of the following is the strongest oxidizing agent?
 - (a) \mathbf{F}_2

(b) Cl,

- (c) Br,
- (d) I₂

- Ans. (a) F,
- Q. 2. Fill in the blanks:
 - (a) The reaction in which electrons are transferred from one reactant to another is called ______ reaction.
 - (b) The lowest possible oxidation state of nitrogen is
 - (c) Among $SO_{2'}$ H_2SO_4 and sodium thiosulpate, the sulphur has the highest oxidation state in
 - (d) Among the halide ions, _____ is the most powerful reducing agent.
- Ans. (a) redox
 - (b) -3
 - (c) H₂SO₄
- (d) iodide
- Q. 3. Classify the following as oxidation and reduction

- reaction on the basis of addition or removal of oxygen/hydrogen:
- (a) $ZnO + C \rightarrow Zn + CO$
- (b) $CH_4 + 2O_7 \rightarrow CO_7 + 2H_7O_7$
- (c) Cl₂ + H₂ \rightarrow 2HCl
- (d) H,S + Cl, \rightarrow 2HCl + S
- (e) $4HCl + MnO_2 \rightarrow MnCl_2 + Cl_2 + 2H_2O$
- (f) Vegetable oil + $H_2 \rightarrow$ Vegetable ghee
- Ans. (a) Reduction
 - (b) Oxidation
 - (c) Reduction
 - (d) Reduction
 - (e) Oxidation
 - (f) Reduction
- Q. 4. What happens when hydrogen sulphide gas is passed through solution containing zinc ions?
- Ans. White ppt of ZnS is formed.
- Q.5. Show by an equation an example where decomposition reaction is not a redox reaction

Ans.
$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2 \xrightarrow{(s)} (s)$$

- Q. 6. Which reaction occurs at cathode in a galvanic cell?
- Ans. Reduction
- Q.7. What is the significance of a salt bridge in a galvanic cell?
- Ans. It converts the two half cells and completes the circuit. It keeps the solution electrically neutral in the two half cells.
- Q. 8. What is the role of diphenylamine in the potassium dichromate titration?
- Ans. Diphenylamine is used as an indicator. As Cr_2O_7 does not act as self-indicator, it oxidises the diphenylamine after the end point to produce intense blue colour which signifies the completion of titration.

3

2 Marks Questions

- Q. 1. With the help of reactions, show what happens when aluminium is placed in an aqueous solution containing silver ions.
- Ans. Al(s) \to Al⁺³ (aq) + 3e⁻ Ag⁺(aq) +e⁻ \to Ag(s)
- (oxidation) (reduction)

$$Al(s) \rightarrow Al^{+3}(aq) + 3e^{-}$$

$$[Ag^{+}(aq) + e^{-} \rightarrow Ag(s)] \times 3$$

$$Al(s) + 3Ag^{+}(aq) \rightarrow Al^{+3}(aq) + 3Ag(s)$$

Contact: +91 98984 99773

Q. 2. Write the reaction when zinc rod is immersed in an aqueous solution of copper nitrate.

Zn(s) + Cu⁺² + 2NO₃⁻ → Zn⁺²(aq) + 2NO₃⁻(aq) + Cu(s)

Ans. Zinc atom loses two electrons, get oxidised and pass into the solution in the form of Zn⁺² ions.

The blue colour of the solution is discharged, due to conversion of blue coloured Cu⁺² ions into conversion.

The blue colour of the solution is discharged, due to conversion of blue coloured Cu⁺² ions into copper atoms. The electrons lost by zinc are accepted by Cu⁺² ions and thus Cu⁺² ions are reduced.

Commonly Made Error

Students often do not write correct equations.

Answering Tips

- Students must practice to write correct equations.
- · Charges should be properly written.
- Q. 3. Determine the change in oxidation number of S in H₂S and SO₂ in the following:

$$2H_2S(g) + SO_2(g) \rightarrow 3S(s) + 2H_2O(g)$$

Ans.
$$2H_2S(g) + SO_2(g) \rightarrow 3S(s) + 2H_2O(g)$$

O.N. -2 +4 0

O.N. of S changes from -2 in H_2S and +4 in SO_2 to O in elemental sulphur.

Commonly Made Error

 Students often get confused with correct oxidation number.

Answering Tips

- Students must write the oxidation numbers and then specify the changes involved.
- Q. 4. Give reason: The oxidation number of fluorine in all its compounds is always -1.
- Ans. The oxidation number of fluorine in all its compounds is always -1 because it has seven electrons in its valence shell and needs only one electron to have octet configuration and fluorine is very reactive.
- Q. 5. Give reason : Chlorine liberates iodine from KI solution.
- Ans. The oxidising power of halogens on going down the group (17) decreases. Fluorine having highest oxidising power and iodine having the least.

Thus, chlorine placed above iodine can replace I-ions in solution.

Chlorine undergoes metal displacement reaction and displaces iodine from KI solution.

$$\overset{0}{\text{Cl}_2(g)} + \overset{+1-1}{2} \overset{-1}{\text{KI}} (aq) \longrightarrow \overset{+4-1}{2} \overset{0}{\text{KCl}} (aq) + \overset{0}{\text{I}_2(s)}$$

Q. 6. What sort of information can you draw from the following reaction?

(CN)₂(g) + 2OH⁻(aq) → CN⁻(aq) + CNO⁻(aq) + H₂O(I)
Ans. It is a disproportionation reaction in which (CN)₂ is simultaneously reduced to CN⁻ ions and oxidised to CNO⁻ ions. The reaction takes place in basic medium.

3 Marks Questions

Q. 1. Show how formation of magnesium oxide is a redox reaction.

Ans. In the formation of MgO:

$$2Mg + O_2 \rightarrow 2MgO$$

Here, Mg loses two electrons to form Mg²⁺. Therfore, magnesium has undergone oxidation.

$$Mg \rightarrow Mg^{2+} + 2e^{-}$$

 $2Mg \rightarrow 2Mg^{2+} + 4e^{-}$

Oxygen atom has accepted two electrons given by magnesium and has undergone reduction.

$$O + 2e^{-} \rightarrow O^{2-}$$

 $O_{2} + 4e^{-} \rightarrow 2O^{2-}$

Thus, in this reaction, electrons are transferred from one reactant to another is called as redox

reaction.

Here magnesium is a reducing agent while oxygen is an oxidising agent.

Commonly Made Error

 Some students often get confused with the correct equations involved.

Answering Tips

- Students must understand clearly the meaning of redox reaction.
- Based on it, frame their equations.
- Write correct equations and justify why it is redox reaction.

Contact: +91 98984 99773

- Q. 2. Identify the substance oxidised and reduced, oxidising agent and reducing agent for each of the following reactions:
 - (1) $2AgBr(s) + C_bH_bO_2(aq) \rightarrow 2Ag(s) + 2HBr(aq) + C_bH_4O_2(aq)$
 - (2) $HCHO(l) + 2[Ag(NH_s)_s]^+(aq) + 3OH^-(aq) \rightarrow 2Ag(s) + HCOO^-(aq) + 4NH_s(aq) + 2H_sO(l)$
 - (3) $HCHO(l) + 2Cu^{2+}(aq) + 5OH^{-}(aq) \rightarrow Cu_{2}O(s) + HCOO^{-} + 3H_{2}O(l)$
 - (4) $N_2H_4(l) + 2H_2O_2(l) \rightarrow N_2(g) + 4H_2O(l)$

Ans.

S.No	Substance oxidised	Substance reduced	Oxidising agent	Reducing agent
(1)	$C_6H_6O_2(aq)$	AgBr(s)	AgBr	C ₆ H ₆ O ₂ (aq)
(2)	HCHO(I)	$[Ag(NH_3)_2]^+$ (aq)	$[Ag(NH_3)_2]^+$ (aq)	HCHO(l)
(3)	HCHO(I)	Cu²+(aq)	Cu ²⁺ (aq)	$H_2O_2(l)$
(4)	$N_{2}H_{4}(I)$	H ₂ O ₂ (l)	H,O,(<i>l</i>)	$N_2H_4(l)$

(30)

5 Marks Questions

- Q. 1. State the rules for the determination of oxidation number of an atom.
- Ans. (1) Oxidation Number of all elements in the uncombined state/elementary state is zero.
 - (2) Oxidation Number in a monoatomic ion is equal to charge present on an ion.
 - (3) Fluorine has Oxidation Number –1 in all compounds.
 - (4) Oxidation Number in all compounds of alkali metals is +1 in and that of alkaline earth metal is +2.
 - (5) Oxidation Number of hydrogen in all compounds except hydrides is +1.
 - (6) In KH, CaH₂, the Oxidation Number of hydrogen is +1.
 - (7) Oxidation Number of oxygen (except in peroxides, suboxides or super oxides) is –2.
 - (8) Algebraic sum of oxidation number of all atoms in a neutral molecule is zero.
- Q. 2. Find the oxidation number of:
 - (1) S in Na₂S₄O₆
 - (2) Cr in K₂Cr₂O₇
 - (3) Mn in K, MnO
 - (4) Fe in Fe,O,
- Ans. The oxidation number of
- (1) $S in Na_2S_4O_6$
 - Oxidation number of Na = +1, O = -2, S = x, then substituting oxidation number values in neutral molecule Na₂S₄O₆

We get,
$$(+1)^{2} \times 2 + (x) \times 4 + (-2) \times 6 = 0$$

$$2 + 4x - 12 = 0$$

$$4x = +12 - 2 = +10$$

$$x = +\frac{10}{4} = +\frac{5}{2}$$

- :. The oxidation number of S in Na₂S₄O₆ is +5.
- (2) Cr in K₂Cr₂O₂
 - Oxidation number of K = +1, O = -2, Cr = x, then substituting oxidation no. values in neutral molecule $K_2Cr_2O_2$

We get,
$$(+1) \times 2 + (x) \times 2 + (-2) \times 7 = 0$$

$$2x = +14 - 2 = +12$$

$$x = +\frac{12}{2} = +6$$

- \therefore The oxidation number of Cr in $K_2Cr_2O_7$ is +6.
- (3) Mn in K_2 MnO₄
 - Oxidation number of K = +1, O = -2, Mn = x, then substituting oxidation no. values in neutral molecule K_2MnO_4

We get,
$$(+1) \times 2 + (x) + (-2) \times 4 = 0$$

$$x = 8 - 2 = +6$$

- x = +6
- \therefore The oxidation number of Mn in K_2 MnO₄ is +6
- (4) Fe in Fe₃O₄
 - Oxidation number of O = -2, Fe = x, then

substituting oxidation no. values in neutral molecule Fe₂O₄

We get,
$$(x) \times 3 + (-2) \times 4 = 0$$

$$3x = 8$$

$$x = \pm \frac{8}{3}$$

 \therefore The oxidation number of Fe in Fe₃O₄ is + 8.

Commonly Made Error

 Students often get confused with correct oxidation number.

Answering Tips

- Students must practice to write correctly the oxidation numbers and find the correct oxidation number of asked element.
- Students must avoid creating errors in calculations.
- Q. 3. Calculate the oxidation number of the underlined elements in the following ions?
 - (1) <u>IO</u>,-

(2) MnO₄²⁻

- (3) PO₄3-
- (4) SO,2-
- Ans. (1) IO₃

Let oxidation number of I be x, O = -2 as IO_3^- has charge equal to -1, then sum of oxidation no. of all atoms is equal to -1.

Therefore,
$$(x) + (-2) \times 3 = -1$$

$$x = -1 + 6$$

$$x = 5$$

Hence oxidation number of I in IO_3^- ion is +5.

(2) MnO₄²-

Let oxidation number of Mn be x, O = -2 as MnO₄²-has charge equal to -2, then sum of oxidation no. of all atoms is equal to -2.

Therefore,
$$(x) + (-2) \times 4 = -2$$

$$x = -2 + 8$$

$$x = 6$$

Hence oxidation number of Mn in MnO_4^{2-} ion is +6.

(3) PO₄³⁻

Let oxidation number of P be x, O = -2 as PO_4 has charge equal to -3, then sum of oxidation no. of all atoms is equal to -3.

Therefore,
$$(x) + (-2) \times 4 = -3$$

$$x = -3 + 8$$

$$x = 5$$

Hence oxidation number of P in PO_4^{3-} ion is +5.

(4) SO₄²-

Let oxidation number of S be x, O = -2 as SO_4^2 -has charge equal to -2, then sum of oxidation no. of all atoms is equal to -2.

Therefore,
$$(x) + (-2) \times 4 = -2$$

$$x = -2 + 8$$

Contact: +91 98984 99773

$$x = 6$$

Hence oxidation number of S in SO_4^{2-} ion is +6.

Commonly Made Error

 Some students make mistakes in positive and negative charges.

Answering Tips

- Students must learn the concept of oxidation number properly.
- They must practice how to calculate oxidation number.
- Q. 4. Identify the substance undergoing oxidation, the substance undergoing reduction, the oxidising agent and the reducing agent in each of the following reactions:

$$3MnO_2 + 4Al \rightarrow 3Mn + 2Al_2O_3$$

 $Cr_2O_7 + 6Fe^{2+} + 14H^+ \rightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$

Ans. Writing the oxidation numbers of all atoms involved in the given reaction, we have

From the above it is clear that the oxidation number of Al increases from 0 to +3. Hence, Al undergoes oxidation and acts as a reducing agent. In MnO₂, the oxidation number of Mn decreases from +4 to 0. Therefore, MnO₂ undergoes reduction and acts as an oxidizing agent.

For the given reaction, we have

increase in O.N.

$$Cr_2O_7 + Fe^{2^+} + 14^+$$
 $Cr_2O_7 + Fe^{2^+} + 14^+$
 $Cr_2O_7 + Fe^{2^+} + 14^+$

From the above, it is clear that the oxidation number of Fe²⁺ ion increases from +2 to +3. Therefore, Fe²⁺ ion gets oxidised and acts as a reducing agent. In $\text{Cr}_2\text{O}_7^{2-}$ ion, the oxidation number of Cr decreases from +6 to +3. Hence, $\text{Cr}_2\text{O}_7^{2-}$ ion gets reduced and acts as an oxidizing agent.

Q. 5. Calculate the oxidation number of sulphur, chromium and nitrogen in H₂SO₅, CrO₅ and NO³⁻. Suggest structure of these compounds. Count for the fallacy.

Ans. (1)
$$H_2SO_5$$

Oxidation number of sulphur in H₂SO₅

$$2 \times (+1) + x + 5 \times (-2) = 0$$

x = 10 - 2 = +8

But the oxidation number + 8 for sulphur is not possible as it has only 6 electrons in its valence shell.

It can exhibit maximum oxidation state = + 6. Hence, in H_aSO_e , two oxygen atoms must be links

Hence, in H_2SO_5 , two oxygen atoms must be linked together.

Considering this fallacy can be removed. Therefore, the structure of H₂SO₅ should be:

Based on the above structure, we have,

$$(+1) + (-2) + x + (-2)2 + (-1)2 + (+1) = 0$$

 $-1 + x - 4 - 2 + 1 = 0$

$$x = +6$$

(2) CrO₅

Oxidation number of Cr in CrO,

$$x+5\times(-2)=0$$

$$x = +10$$

But the oxidation number +10 for chromium is not possible as it has only 6 electrons in its valence shell. It can exhibit maximum oxidation state = +6. Fallacy can be removed by considering the structure of CrO_5 as given below:

Based on the above structure, we have,

$$(-1) \times 4 + x + (-2) = 0$$

$$-4 + x - 2 = 0$$
$$x = +6$$

- (3) NO₃-
 - NO_3^-

$$x + (-2)3 = -1$$

(as
$$NO_3^-$$
 bears charge -1)

$$x = +5$$

The structure of NO_3^- is:

Based on the above structure,

$$(-2) \times 2 + x + (-1) = 0$$

$$x = +5$$

Therefore, this structure gives the same oxidation number for N in NO_{\bullet}^{-} .

Hence there is no fallacy.

Commonly Made Error

Students get confuse and write incomplete answers.

Answering Tips

- Students must read the question carefully.
- They must not forget to draw the proper structure.

Contact: +91 98984 99773

Q. 6. Balance the following equation by oxidation number method:

$$K_2Cr_2O_7 + HCl \rightarrow KCl + CrCl_3 + H_2O + Cl_2$$

CBSE | ICSE | CLASS 11

CHEMISTRY

Q. 7. Balance the following equation by ion-electron method:

$$Cr(OH)_3 + IO_3^- + OH^- \rightarrow CrO_4^- + I^- + H_2O$$

Ans. The given equation is:

$$Cr(OH)_3 + IO_3^- + OH^- \rightarrow CrO_4^- + I^-$$

Write the oxidation number of atoms:

 $Cr(OH)_3$ undergoes oxidation while IO_3^- undergoes reduction.

The given reaction can be split up in the following two half reactions:

$$Cr(OH)_3 \rightarrow CrO_4^{2-}$$
 (oxidation half reaction)

$$IO_3^- \rightarrow I^-$$
 (reduction half reaction)

Balancing oxidation half reaction:

The atoms other than H and O i.e. Cr are already balanced.

The given reaction proceeds in basic medium. Therefore, O atoms should be balanced by adding OH-.

They can be balanced as:

$$Cr(OH)_3 + OH^- + 4OH^- \rightarrow CrO_4^{2-} + 4H_2O$$

 $Cr(OH)_3 + 5OH^- \rightarrow CrO_4^{2-} + 4H_2O$

The right hand side is deficient in three negative charges. Therefore, charge can be balanced by adding three electrons on the right.

$$Cr(OH)_3 + 5OH^- \rightarrow CrO_4^{2-} + 4H_2O + 3e^-$$

Contact: +91 98984 99773

This is the balanced oxidation half reaction.

EDUCATION ACADEMY

www.safaleducationacademy.in